

SIBYLL

Eun-Joo Ahn

Bartol Research Institute University of Delaware

with Ralph Engel, Tom Gaisser, Paolo Lipari, Todor Stanev

Aspen April 17th 2007

- average number of hard interaction: $\langle n(\mathbf{b}) \rangle = \sigma_{QCD}(s) \cdot A(\mathbf{b})$
- $P_N = \frac{\langle n(\mathbf{b}) \rangle^N}{N!} e^{-\langle n(\mathbf{b}) \rangle}$ each interaction independent: \bullet log₁₀ (E_{lab} / eV) 12 14 16 10 18 20 200 • $\sigma_{in,hard} = \int d^2 \mathbf{b} \sum_{N=1}^{\infty} P_N$ Minijets 150 ຊິພ 100 . $= \int d^2 \mathbf{b} \, \left(1 - e^{-\sigma_{QCD}(s) \, A(\mathbf{b})} \right)$ Total cross ь section 50 0 100 1000 10000 100000 10 Ecm (GeV)

(Figs. by R. Engel)

Hard and soft interaction

$$\sigma_{in} = \int d^2 \mathbf{b} \, \left(1 - e^{-\{\sigma_{QCD}(s) \, A_{hard}(\mathbf{b}) + \sigma_{soft}(s) \, A_{soft}(\mathbf{b})\}} \right)$$

- Hard interaction: point-like $(\Delta p \Delta b \sim 1 \Rightarrow \Delta b \rightarrow 0)$
 - $A_{hard} \propto \text{proton/pion structure functions} \times \text{folding function} (= \delta^{(2)}(\mathbf{b}_1 \mathbf{b}_2 \mathbf{b}))$

(Figs. by RE)

- Soft interaction: fuzzy $(\Delta p \Delta b \sim 1 \implies \Delta b \neq 0)$
 - $A_{soft} \propto \text{proton/pion structure functions} \times \text{folding function} (= \text{Gaussian})$

Diffraction dissociation

- Non-inelastic
- particle excited and decays
- conserve quantum numbers

 $\mathbf{P} \text{rojectile and } \mathbf{T} \text{arget}$

elastic scattering	$P T \longrightarrow P T$
single diffraction	$P T \longrightarrow P^* T$
	$P T \longrightarrow P T^{\star}$
double diffraction	$P T \longrightarrow P^{\star} T^{\star}$

Proton-air collision

String fragmentation

Nucleus-nucleus scattering

Semi-superposition model

SIBYLL cross section fits

(from RE)

10⁻²

-0.6

-0.4

-0.2

NA49 (*p-C* collision, $E_{lab} = 158 \text{ GeV}$)

(Figs. from RE)

0

0.2

0.4

0.6 X_F

Difference between 1.7 and 2.1

- Energy dependence in determining hard and soft interaction $(p_{\perp}^{min}(s))$;
- soft interaction: $\sigma_{soft}(s)$ is new, $A_{soft}(\mathbf{b})$ is better;
- multiple soft interactions possible;
- diffraction included;
- parton distribution functions updated from pre-HERA to post-HERA;
- updated parameterisations of fragmentation and cross sections.

Limitations and improvements to make

- Too few K^{\pm} multiplicity in p-p;
- not enough anti-baryons produced.

- Full Glauber implementation for nucleus-nucleus interaction;
- add **b** dependence to $p_{\perp}^{min}(s)$;
- add energy dependence to $A_{hard}(\mathbf{b})$;
- retune parameters with updated experiments.

Conclusions

- SIBYLL is minijet model based with other models added.
- SIBYLL 2.1 gives good agreement with collider and air shower data.
- Further improvements planned for next version.

