Numerical Propagation of VHE Cosmic Rays in the Galaxy

Daniel De Marco Bartol Research Institute University of Delaware

in collaboration with T. Stanev and P. Blasi

Outline

"standard" model
simulations
diffusion and drifts
toy model
"realistic" models of the GMF

"Standard" Model

Ginzburg&Ptuskin 1976, Berezinskii at el. 1990...

open issues

- spectral exponent
- anisotropies

CR density ~ E^{-2.7} $\frac{N}{T} = Q$ source sp. ~ E^{-2..-2.4} $\frac{T}{T} = Q$ escape time ~ E^{-0.3..-0.6}
grammage $X = \rho v T$

1. source spectrum

- 2. production of light elements by spallation –
- 3. anisotropies vs/energy

extrapolation issues

anisotropy		1.5x10 ¹⁴ eV	10 ¹⁵ eV	1.5×10 ¹⁷ eV
Hillas 2005	obs.	0.037%	<0.4%	1.7%
	D∝R ^{0.6}	5%	16%	180%
	D∝R ^{1/3}	0.6%	1.1%	3.7%

residence time

observations T(GeV) ~ 10⁷ yr. extrapolations T(10¹⁶eV) ~ 600 yr with D∝R^{0.6} ~ 5x10⁴ yr with D∝R^{1/3} simulations Zirakashvili et al. 1998: 10⁵ yr at 10¹⁷eV Horandel et al. 2007: 10⁷ yr at 10¹⁵eV

Why GO numerical*?

around 10¹⁷eV: transition region for protons
simulations in literature obtain too longer times, and the slope seems odd too
we would like to see the transition from -1/3 to -1
"realistic" model of the galactic magnetic field: arms, gradients...

In non-constant background field: what happens to diffusion?

Numerical Simulation

arbitrary magnetic field (regular + turbulent)

regular: constant, azimuthal, galactic...
turbulent: isotropic and slab turbulence

diffusion, drifts automatically included
can calculate diffusion coefficients, times of escape, anisotropies....

 \odot minimum energy ~10¹⁵eV for protons

Turbulent Field

Diffusion Coefficients

without BG. field

Drifts

gradient drift

curvature drift

turbulence reduces drifts

$$V_{\perp} = c r_L \left\{ \frac{1}{2} \sin^2 \alpha \frac{B_0 \times \nabla B_0}{A_0} + \cos^2 \alpha \left[\frac{B_0 \times \nabla B_0}{B_0^2} + \frac{\left(\nabla \times B_0\right)_{\perp}}{B_0} \right] \right\}$$
pitch angle pitch angle Rossi 1970

1st order computation: average over a gyration does not make sense if the field varies on smaller scales

Toy Model: Azimuthal Field

Zirakashvili et al. 1998, Horandel et al. 2007 ... $B=1\mu G$, azimuthal, constant

field lines are closed: D_{perp}
 D_{par} does not matter
 drifts might be important

Toy Model: Azimuthal Field

10 y [kpc] -10-10 -5 5 10 x [kpc]

Zirakashvili et al. 1998, Horandel et al. 2007 ... $B=1\mu G$, azimuthal, constant

field lines are closed: D_{perp}
 D_{par} does not matter
 drifts might be important

Az. Field: time of escape

time of escape from a cylinder with $h_{1/2}=0.5$ kpc

Az. Field: time of escape

time of escape from a cylinder with h_{1/2}=0.5kpc

Az. Field: time of escape

Azimuthal Diffusion

fit with gaussian at fixed times μ, σ $v_{D} \leftarrow D(E)$

Azimuthal Diffusion

fit with gaussian at fixed times μ, σ $v_{D} \leftarrow D(E)$

diffusion is modified

"Realistic" Galaxy

BSS-A

$$B(\rho, \theta) = B_0(\rho) \cos\left(\theta - \beta \log\frac{\rho}{\rho_0}\right)$$

$$\int \int \int \frac{\rho_0}{10.55 \text{kpc}} \frac{1}{1/10} \int \frac{10.55 \text{kpc}}{1/10} \frac{1}{1/10} \int \frac{1}{1/10} \frac{10.55 \text{kpc}}{1/10} \frac{1}{1/10} \int \frac{1}{1/10} \frac{10.55 \text{kpc}}{1/10} \frac{1}{1/10} \int \frac{1}{1/10} \frac{1}{1/10} \frac{1}{1/10} \frac{1}{1/10} \frac{1}{1/10} \frac{1}{1/10} \int \frac{1}{1/10} \frac$$

$$B(\rho, \theta, z) = \pm B(\rho, \theta) \exp(-|z|/z_0]$$

two z scales:
 $z_0 = 1$ kpc for $|z| < 0.5$ kpc
 $z_0 = 4$ kpc for $|z| > 0.5$ kpc

many scales
R&Z gradients
arms gradients

Stanev 1997, Han&Qiao 1994 ...

Drifts - BSS Field

just above the plane

Drifts - BSS Field

just below the plane

time of escape

injection at Earth, collection at a cylinder $h_{1/2}=4kpc$, R=20kpc

δB/B constant

Iow energy slopes
 0.6-0.8
 absolute values already too large

time of escape

injection at Earth, collection at a cylinder $h_{1/2}=4kpc$, R=20kpc

δ<mark>B</mark> has no arms

between the arms $\delta B/B$ is bigger

low energy slopes
 0.6-0.8
 absolute values already too large

conclusions

Dperp/Dpar is not constant. a kolmogorov spectrum can produce an escape time E^{-0.5-0.6} in some geometries

the curvature of the background field influences the diffusion process

for the "realistic" galaxy the flatter slope is not yet seen (down to 10¹⁵eV)