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Color flow and strings (i)
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Color flow and strings (ii)
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String fragmentation: baryon pairs
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String fragmentation: popcorn effect
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SIBYLL minimum string configuration
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QGSJET minimum string configuration
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EPOS minimum string configuration
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Data and two-string models
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Two-string models:

• very successful
• long-range correlations
• charge distribution
• delayed threshold for 

baryon pair production

(Capella et al., Physics Reports 1994)



Examples of comparisons with data
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FIG. 1. Elementary parton-parton scattering: the hard scattering
in the middle is preceded by parton emissions (initial state spacelike
cascade); these partons being usually off-shell, they emit more partons
(final state timelike cascade). For all this we use a symbolic parton
ladder.

One may simply consider the remnants to be diquarks,
providing a string end, but this simple picture seems to be
excluded from the strange antibaryon results produced at the
CERN super proton synchrotron (SPS) [19].

We therefore adopt the following picture, as indicated in
Fig. 2: not only a quark but also a two-fold object takes
part directly in the interaction, being a quark-antiquark or a
quark-diquark, leaving behind a colorless remnant, which is
in general excited (off-shell). So we have finally three white
objects: the two off-shell remnants and the parton ladder
between the two active partons on either side (by parton
we mean quark, antiquark, diquark, or antidiquark). We also
refer to “inner contributions” (from parton ladders) and “outer
contributions” (from remnants), which reflect the fact that
the remnants produce particles mainly at large rapidities and
the parton ladders at central rapidities, see Fig. 3. Whereas the
outer contributions are essentially energy independent, apart
from a shift in rapidity, the inner contributions grows with
energy, central rapidities. But at RHIC energies, a substantial
remnant contribution remains at midrapidity.

We showed in Ref. [20] that the three-object picture as
discussed in this paper can solve the multi-strange baryon
problem of Ref. [19].

In practice, a couple of parameters determine remnant
properties. We assume the remnants to be off-shell with
probability pO , a mass distribution given as

prob ∝ M−2αO , (1)

within the kinematic allowed range of M, with parameter
values which are not necessarily the same for nondiffractive
and diffractive interactions (the latter ones defined as those
without parton ladders). We use currently for pO 0.75 (dif )
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FIG. 2. Complete picture, including remnants, which are an
important source of particle production at RHIC energies.
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FIG. 3. Inner contributions from the parton ladder (full lines) and
outer contributions from the remnants (dashed lines) to the rapidity
distribution of hadrons (artist’s view). LHC indicates energies reached
by the CERN Large Hadron Collider.

and 0.95 (nondif ), and for αO 0.75 (dif ) and 1.1 (nondif ).
Those excitation exponents may give rise to quite high mass
remnants; RHIC and SPS data seem to support this. High mass
remnants will be treated as strings.

Even inclusive measurements often require more informa-
tion than just inclusive cross sections, for example, via trigger
conditions. In any case, for detailed comparisons we need an
event generator, which obviously requires information about
exclusive cross sections (the widely used pQCD generators
are not event generators in this sense, they are generators of
inclusive spectra, and a Monte Carlo event is not a physical
event). This problem has been known for many years; the
solution is Gribov’s multiple scattering theory, which has been
employed by many authors. This formulation is equivalent to
using the eikonal formula to obtain exclusive cross sections
from knowledge of the inclusive one.

Recently we indicated inconsistencies in this approach,
proposing an “energy-conserving multiple scattering treat-
ment” [18]. The main idea is simple: in the case of multiple
scattering, when calculating partial cross sections for double,
triple, . . . scattering, one has to explicitly account for the fact
that the total energy has to be shared among the individual
elementary interactions.

A consistent quantum mechanical formulation of multiple
scattering requires consideration not only of the (open)
parton ladders, discussed so far, but also of closed ladders,
representing elastic scattering, see Fig. 4. Closed ladders do
not contribute to particle production, but they are crucial
since they affect substantially the calculations of partial cross

parton

ladder

parton

ladder

closedopen

FIG. 4. Two elements of the multiple scattering theory: open
ladders, representing inelastic interactions, and closed ladders,
representing elastic interactions.
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TABLE I. Best fit values for splitting parameters. Included in the
fit are data not shown in this paper.

Coefficient Corresponding variable Value

sM Minimum squared screening energy (25 GeV)2

wM Defines minimum for z′
0 6.000

wZ Global Z coefficient 0.080
wB Impact parameter width coefficient 1.160
aS Soft screening exponent 2.000
aH Hard screening exponent 1.000
aT Transverse momentum transport 0.025
aB Break parameter 0.070
aD Diquark break probability 0.110
aS Strange break probability 0.140
aP Average break transverse momentum 0.150

also compare the experimental energy dependence of cross
sections [22], hadron multiplicities [23], and (pseudo)rapidity
distributions [24,25] in pp or pp̄. The best fit parameters are
shown in Table I.

V. RESULTS FOR PROTON-PROTON

Ladder splitting is quite important for pp at very high ener-
gies, where cross sections and multiplicities are considerably
suppressed because of screening. At RHIC energies, however,
the effects are small: the total cross section is reduced by 5%,
the multiplicity by 10%. Concerning the transverse momentum
spectra to be discussed in detail in the following, the effect is
hardly visible.

When comparing charged particle pt spectra in pp from
the different RHIC experiments, one has to keep in mind
that STAR collaboration refers to non-single-diffractive (NSD)
events rather than inelastic ones. To demonstrate the difference
between the two, we show in Fig. 9 the UA5 [26] Collaboration
pseudorapidity distributions for NSD and inelastic events,
together with EPOS simulations. For the simulation of NSD
events, we use simply the same requirement as used in the
experiment (coincidence of charged particles in a forward and
backward pseudorapidity interval).

FIG. 9. Pseudorapidity distribution for inelastic and NSD events
in pp̄ collisions at 200 GeV. Lines are EPOS results; the points are
data [26]. Dotted line represents the inner contribution to the inelastic
distribution (many particles are coming from remnants).

FIG. 10. Ratio of NSDBBC differential yield to inelastic differen-
tial yield, in pp collisions, for pions (π ), kaons (K ), and protons ( p).

In the case of STAR, one could also define NSD as the
events accepted by the beam beam counter (BBC). What is
actually done is somewhat different. The differential cross
section according to BBC is multiplied by 30/26, in order to
correspond to what Pythia defines to be non-single-diffractive,
corresponding to 30 mb. Then, again based on Pythia, it is
argued that the inelastic differential yield for inelastic events
is obtained essentially (with a small correction at small pt ) by
multiplying by 30/42 (just the ratio of the cross sections), since
single-diffractive (SD) events do not contribute to particle
production. So, the originally measured differential yield and
the inelastic one differ essentially by a factor of 42/30 =
1.4. This is not quite what EPOS calculations provide when
simulating NSD events with the BBC trigger condition and
comparing with inelastic events. As seen in Fig. 10, the ratio
of the NSDBBC differential yield to the inelastic differential
yield, rather than being 1.4, differs considerably as a function
of pt and also depends on the particle species.

In Fig. 11, we show pt spectra (differential yields) for NSD
events, compared to STAR data [27], and for inelastic events,
compared to PHENIX data [6,28]. Simulation and data agree
within 15% (over 6 orders of magnitude).

When studying (later) dAu collisions, there will be
plenty of discussion concerning the pseudorapidity depen-
dence of certain effects. It is therefore necessary to first
check the pseudorapidity dependence of pt spectra for pp.

FIG. 11. Differential yields in pp collisions as a function of pt

for (from top to bottom) charged particles (over 2) for NSD events,
charged particles (over 2) for inelastic events, and neutral pions for
inelastic events. Lines are EPOS simulations; points are data from
STAR [27] and PHENIX [6,28]. The two agree within 15% (over six
orders of magnitude).
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EPOS remnant model and data (i)

remnant decays into two baryons. Since q!qq strings and

q̄! q̄ q̄ strings have the same probability to appear from cut

Pomerons, baryons and antibaryons are produced equally.

However, from remnant decay, baryon production is favored

due to the initial valence quarks.

VI. RESULTS

Here we will concentrate on baryon-antibaryon produc-
tion, because there we obtain strikingly different results com-
pared to other models. However, we also carefully checked

mesons—essentially pion and kaon rapidity and transverse

FIG. 17. Rapidity spectra of baryons and antibaryons calculated from NEXUS 3.0 !projectile remnant contribution: dashed lines; target
remnant contribution: dotted lines; Pomeron contribution: dashed-dotted lines; sum: solid lines" and NA49 experiment #1$ !points".

CONSTRAINTS ON MODELS FOR PROTON-PROTON . . . PHYSICAL REVIEW D 67, 034011 !2003"
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(Liu et al., PRD 2003)
NA49 data
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Two-gluon scattering: SIBYLL

proton

proton

Kinematics etc. given by parton densities and perturbative QCD
Two strings stretched between quark pairs from gluon fragmentation



Two-gluon scattering: QGSJET
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Two-gluon scattering: EPOS
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SIBYLL: high parton density effects
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SIBYLL: simple geometric criterion

No dependence on
 impact parameter !

(R.E. et al., ICRC 1999)
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QGSJET: high parton density effects

(Ostapchenko, PLB 2006, PRD 2006)
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Fig. 10. Complete set of enhanced diagrams containing “zig-zag fans” of kth order.

Fig. 11. Full set of non-loop diagrams.

Here we used the abbreviations χnet
a|d(i) = χnet

a|d(Y − yi, "b −
"bi |Y, "b), χnet

d|a(i) = χnet
d|a(yi, "bi |Y, "b), i = 1,2, and introduced

general “net fan” contribution as χnet
a|d = limk→∞ χ

net(k)
a|d . Us-

ing (13), we obtain for the latter the recursive equation

χnet
a|d(y1, "b1|Y, "b)

= χP
aπ

(
s0e

y1 , b1
)

+ G

C2
π

y1∫

0

dy2

∫
d2b2

{[
1 − e

−χnet
a|d (y2,"b2|Y,"b)]

× exp
(
−χnet

d|a(Y − y2, "b − "b2|Y, "b)
)

(17)− χnet
a|d(y2, "b2|Y, "b)

}
χP

ππ

(
s0e

y1−y2, |"b1 − "b2|
)
.

3. Numerical results

The obtained expressions allowed us to calculate hadronic
elastic scattering amplitudes and correspondingly total cross
sections and elastic scattering slopes with enhanced contribu-
tions taken into account. Here fad , σ tot

ad , Bel
ad are given by usual

expressions (3)–(6), with the pomeron quasi-eikonal χP
ad be-

ing replaced by χ tot
ad = χP

ad + χenh
ad . Technically, the “net fan”

contribution χnet
a|d has been obtained solving (17) iteratively and

substituted to (16) to calculate enhanced diagram contribution
χenh

ad . Concerning the parameter choice we used the usual values
C2

p = 1.5, Cπ = 1.6/Cp , γπ = 2/3γp [3], and from compar-
ison to data obtained αP(0) = 1.18, α′

P(0) = 0.195 GeV−2,
γp = 1.59 GeV−1, R2

p = 1.8 GeV−2, R2
π = 0.7 GeV−2, G3P =

9 × 10−3 GeV2. Thus, for the triple-pomeron coupling we have
r3P = 4πGCπγ 3

π = 0.18 GeV−1 compared to 0.12 GeV−1 and
0.083 GeV−1 in [9] and [10] correspondingly. The results for
σ tot

pp , σ tot
πp , Bel

pp are shown in Fig. 12 as calculated with the full
scheme or based on the bare pomeron eikonal χP

ad . In practice,
it is sufficient to take into consideration only the “tree” χ tree

ad

and the first “zig-zag” χ
enh(2)
ad corrections, i.e. to use for the

enhanced contribution χ̃enh
ad = χ tree

ad + χ
enh(2)
ad instead of χenh

ad

Fig. 12. Total cross section (left) and elastic scattering slope (right) as calculated
with and without enhanced contributions—solid and dashed lines correspond-
ingly. The compilation of data is from [12].

defined in (16); the difference for the calculated cross sections
is below percent level. This is because the contributions χ

enh(k)
ad

for k ! 3 are suppressed by exponential factors in the same way
as for “loop” diagrams in (10).

Let us finally verify that the developed scheme approaches
the asymptotic result (9) in the “dense” limit. Indeed, neglect-
ing the radius of multi-pomeron vertices, at s → ∞, b → 0 and
for αP(0) − 4πGγ 2

π > 1 we can obtain the solution of (17)
as χnet

a|d(y1, "b1|Y, "b) ' χP
aπ (s0e

y1 , b1) + &χ
asymp
aπ (s0e

y1 , b1),
&χ

asymp
aπ being defined in (9). Substituting this to (16), we see

that the enhanced contribution χenh
ad reduces to the asymptotic

form (9): χenh
ad (s, b) ' &χ

asymp
ad (s, b).

In conclusion, we re-summed dominant enhanced contribu-
tions to elastic hadron–hadron scattering amplitude to all or-
ders. Although the numerical calculations have been performed
using the simple pomeron exchange amplitude (1), (2), the ob-
tained formulas can be used for a different functional form of
f P

ad(s, b). In principle, one may apply similar techniques in the
perturbative QCD, using the BFKL pomeron amplitude [13],
provided eikonal approximation remains applicable for multi-
pomeron vertices.
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projectile
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partons

projectile
partons
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FIG. 5. Basic parton-parton interaction in nucleus-nucleus colli-
sions: a projectile parton always interacts with exactly one parton on
the other side either elastically (closed parton ladder) or inelastically
(open parton ladder).

for kinky strings. For pB , we use 0.53 (soft), 0.30 (kinky), and
0.77 (remnant).

III. SPLITTING OF PARTON LADDERS

Let us first consider very asymmetric nucleus-nucleus
collisions, such as proton-nucleus or deuteron-nucleus. The
formalism developed earlier for pp can be generalized to these
nuclear collisions, as long as one assumes that a projectile
parton always interacts with exactly one parton on the other
side, elastically or inelastically (realized via closed or open
parton ladders), see Fig. 5. We employ the same techniques as
those developed in the previous section. The calculations are
complicated and require sophisticated numerical techniques,
but they can be done. The corresponding results for dAu will
be discussed later.

In the case of protons (or deuterons) colliding with heavy
nuclei (such as gold), there is a complication that has to be
taken into account. Suppose an inelastic interaction involves
an open parton ladder, between a projectile and some target
parton. The fact that these two partons interact implies that they
are close in impact parameter (transverse coordinate). Since
we have a heavy target, many target partons are available, and
there is a good chance of finding one among them being close
in impact parameter to the two interacting partons. In this case,
it may be quite probable that a parton from the ladder interacts
with this second target parton, inelastically or elastically, as
shown in Fig. 6.

As mentioned earlier, “ladder” is a symbolic notation,
covering soft contributions as well as “real” perturbative parton

projectile
partons

target
partons

projectile
partons

target
partons

FIG. 6. Inelastic and elastic “rescattering” of a parton from the
parton ladder with a second target parton. We talk about (inelastic
and elastic) splitting of a parton ladder.

ladders. Even the latter ones are in general coupled to projectile
and target via soft pieces [18]. In the case of soft ones, we
still talk about partons, but they are nonperturbative partons.
We expect that ladder splitting occurs more likely in the soft
regions, and that the parallel legs after the splitting are more
likely soft.

Let us first discuss the effects of elastic splitting. The
squared amplitude for an elementary inelastic interaction
involving two partons with light cone momentum shares
x+ = 2p+/

√
s and x− = 2p−/

√
s can be parametrized quite

accurately as [18]

α (x+)β(x−)β, (2)

with two parameters α and β depending on the squared
energy s and the impact parameter b (

√
s is the proton-proton

c.m. system energy). Any addition of an elastic contribution
(closed ladder), be it in parallel or via splitting, provides an
interference term, which contributes negatively to (partial)
cross sections. So an additional elastic leg, even though it
does not affect particle production, provides screening. Model
calculations show that adding elastic splittings to the basic
diagrams modifies the corresponding squared amplitude as

α (x+)β(x−)β+ε, (3)

and therefore the whole effect can be summarized by a
simple positive exponent ε, which suppresses small light cone
momenta. So the existence of many target partons effectively
screens small x contributions, which agrees qualitatively with
the concept of saturation. But this is only part of the whole
story; several other aspects have to be considered.

An additional effect is the transport of transverse momen-
tum via an attached closed ladder, as shown in Fig. 7. Such
a transport we use already in the basic parton model, when
it comes to diffractive scattering, realized via a closed ladder.
Here, some transverse momentum transfer is needed to explain
the transverse momentum spectra of protons at large x (in the
diffractive region). In the case of diffractive target excitation,
the projectile gets simply a pt kick. We should have the same
phenomenon in the case of elastic splitting: the ladder parton
involved in the interaction should get a pt kick in the ame way
as the proton in diffractive scattering.

Let us turn to inelastic splitting, Fig. 8. Consider the
example shown in the figure. The upper part has only an
ordinary parton ladder, so we expect normal hadronization.
However, the lower part has two parallel ladders which are
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FIG. 7. Transport of transverse momentum via an attached closed
ladder.
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partons

target
partons

FIG. 5. Basic parton-parton interaction in nucleus-nucleus colli-
sions: a projectile parton always interacts with exactly one parton on
the other side either elastically (closed parton ladder) or inelastically
(open parton ladder).

for kinky strings. For pB , we use 0.53 (soft), 0.30 (kinky), and
0.77 (remnant).

III. SPLITTING OF PARTON LADDERS

Let us first consider very asymmetric nucleus-nucleus
collisions, such as proton-nucleus or deuteron-nucleus. The
formalism developed earlier for pp can be generalized to these
nuclear collisions, as long as one assumes that a projectile
parton always interacts with exactly one parton on the other
side, elastically or inelastically (realized via closed or open
parton ladders), see Fig. 5. We employ the same techniques as
those developed in the previous section. The calculations are
complicated and require sophisticated numerical techniques,
but they can be done. The corresponding results for dAu will
be discussed later.

In the case of protons (or deuterons) colliding with heavy
nuclei (such as gold), there is a complication that has to be
taken into account. Suppose an inelastic interaction involves
an open parton ladder, between a projectile and some target
parton. The fact that these two partons interact implies that they
are close in impact parameter (transverse coordinate). Since
we have a heavy target, many target partons are available, and
there is a good chance of finding one among them being close
in impact parameter to the two interacting partons. In this case,
it may be quite probable that a parton from the ladder interacts
with this second target parton, inelastically or elastically, as
shown in Fig. 6.

As mentioned earlier, “ladder” is a symbolic notation,
covering soft contributions as well as “real” perturbative parton

projectile
partons

target
partons

projectile
partons

target
partons

FIG. 6. Inelastic and elastic “rescattering” of a parton from the
parton ladder with a second target parton. We talk about (inelastic
and elastic) splitting of a parton ladder.

ladders. Even the latter ones are in general coupled to projectile
and target via soft pieces [18]. In the case of soft ones, we
still talk about partons, but they are nonperturbative partons.
We expect that ladder splitting occurs more likely in the soft
regions, and that the parallel legs after the splitting are more
likely soft.

Let us first discuss the effects of elastic splitting. The
squared amplitude for an elementary inelastic interaction
involving two partons with light cone momentum shares
x+ = 2p+/

√
s and x− = 2p−/

√
s can be parametrized quite

accurately as [18]

α (x+)β(x−)β, (2)

with two parameters α and β depending on the squared
energy s and the impact parameter b (

√
s is the proton-proton

c.m. system energy). Any addition of an elastic contribution
(closed ladder), be it in parallel or via splitting, provides an
interference term, which contributes negatively to (partial)
cross sections. So an additional elastic leg, even though it
does not affect particle production, provides screening. Model
calculations show that adding elastic splittings to the basic
diagrams modifies the corresponding squared amplitude as

α (x+)β(x−)β+ε, (3)

and therefore the whole effect can be summarized by a
simple positive exponent ε, which suppresses small light cone
momenta. So the existence of many target partons effectively
screens small x contributions, which agrees qualitatively with
the concept of saturation. But this is only part of the whole
story; several other aspects have to be considered.

An additional effect is the transport of transverse momen-
tum via an attached closed ladder, as shown in Fig. 7. Such
a transport we use already in the basic parton model, when
it comes to diffractive scattering, realized via a closed ladder.
Here, some transverse momentum transfer is needed to explain
the transverse momentum spectra of protons at large x (in the
diffractive region). In the case of diffractive target excitation,
the projectile gets simply a pt kick. We should have the same
phenomenon in the case of elastic splitting: the ladder parton
involved in the interaction should get a pt kick in the ame way
as the proton in diffractive scattering.

Let us turn to inelastic splitting, Fig. 8. Consider the
example shown in the figure. The upper part has only an
ordinary parton ladder, so we expect normal hadronization.
However, the lower part has two parallel ladders which are
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FIG. 7. Transport of transverse momentum via an attached closed
ladder.
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We

044902-5

PARTON LADDER SPLITTING AND THE RAPIDITY . . . PHYSICAL REVIEW C 74, 044902 (2006)

FIG. 12. Inelastic differential yields in pp collisions as a function
of pt for (from top to bottom) charged particles (over 2) at η = 0 and
η = 1; negative particles at η = 2.2 and η = 3.2 (always displaced
by factors of 10). Lines are EPOS simulations; points are data [7].
We also plot (dashed) the simulation curve at η = 0, multiplied by
0.1, 0.01, and 0.001, to serve as reference.

In Fig. 12, we plot inelastic differential yields as a function of
pt , at different pseudorapidities; η = 0, η = 1, η = 2.2, and
η = 3.2. We show EPOS simulations compared to BRAHMS
data [7]. We also plot (dashed line) the simulation curve at
η = 0, multiplied by 0.1, 0.01, and 0.001, to have a reference
for the results at the other pseudorapidities. The spectra clearly
get softer with increasing η.

VI. RESULTS FOR DEUTERON-GOLD

All screening effects are linear in Z, so it is worthwhile to
first investigate Z. In very asymmetric collisions such as dAu,
the projectile Z is essentially zero, whereas the target Z differs
considerably from zero. As shown in Fig. 13 (and obvious
from the definition), ZT increases linearly with the number of
collisions. So Z is essentially a centrality measure. In Fig. 14,
we show the Z distribution for the different centrality classes.
In this way, one understands easily how the different centrality
classes are affected by the splitting effects.

In the following, we define centrality via the impact param-
eter variable. A more correct definition (when comparing with
experiments) via multiplicities in given rapidity intervals has
been tested and gives the same results.

FIG. 13. Target Z as a function of centrality, expressed in terms
of the number of binary collisions, for dAu.

FIG. 14. Z distribution for different centrality classes.

Although we are mainly interested here in transverse
momentum spectra, we still show first of all the pseudorapidity
spectra, which finally determine the normalization of the
pt spectra. In Fig. 15, we show pseudorapidity spectra in
minimum bias dAu collisions: EPOS simulations, compared to
data from PHOBOS [29], STAR [4], and BRAHMS [30]. We
also show different contributions to the simulated distribution.
We distinguish inner and outer (projectile and target) contri-
butions, where the outer contributions are meant to contain the
multiple ladders, originating from ladder splittings, treated in
a collective way, as discussed above. The inner contribution
comes from ordinary ladders in the middle. The asymmetry of
the distribution is clearly due to the target remnant contribution
(the projectile contribution, not shown, is very small). In
Figs. 16 and 17, we show pseudorapidity spectra for central
and peripheral dAu collisions.

Let us now turn to pt spectra. One of the first observations
concerning pt spectra in dAu collisions was the fact that not
only does the nuclear modification factor show a nontrivial
behavior, but also this behavior seems to be strongly pseudo-
rapidity dependent, even when varying η by only one unit. We
will investigate this question in the following discussion.

In Fig. 18, we show transverse momentum spectra of
charged particles in dAu collisions at different central-
ities and at different pseudorapidities. The four figures
represent minimum bias, central (0%–20%), mid-central
(20%–40%), and peripheral (40%–100%) collisions. For
each figure, spectra for four pseudorapidity intervals are

FIG. 15. Pseudorapidity spectra of charged particles in minimum
bias dAu collisions. Lines are EPOS simulations; points are data
from PHOBOS [29] (circles), STAR [4] (triangles), BRAHMS [30]
(squares). We also show the inner and outer target contributions to
the simulated distribution.
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TABLE I. Best fit values for splitting parameters. Included in the
fit are data not shown in this paper.

Coefficient Corresponding variable Value

sM Minimum squared screening energy (25 GeV)2

wM Defines minimum for z′
0 6.000

wZ Global Z coefficient 0.080
wB Impact parameter width coefficient 1.160
aS Soft screening exponent 2.000
aH Hard screening exponent 1.000
aT Transverse momentum transport 0.025
aB Break parameter 0.070
aD Diquark break probability 0.110
aS Strange break probability 0.140
aP Average break transverse momentum 0.150

also compare the experimental energy dependence of cross
sections [22], hadron multiplicities [23], and (pseudo)rapidity
distributions [24,25] in pp or pp̄. The best fit parameters are
shown in Table I.

V. RESULTS FOR PROTON-PROTON

Ladder splitting is quite important for pp at very high ener-
gies, where cross sections and multiplicities are considerably
suppressed because of screening. At RHIC energies, however,
the effects are small: the total cross section is reduced by 5%,
the multiplicity by 10%. Concerning the transverse momentum
spectra to be discussed in detail in the following, the effect is
hardly visible.

When comparing charged particle pt spectra in pp from
the different RHIC experiments, one has to keep in mind
that STAR collaboration refers to non-single-diffractive (NSD)
events rather than inelastic ones. To demonstrate the difference
between the two, we show in Fig. 9 the UA5 [26] Collaboration
pseudorapidity distributions for NSD and inelastic events,
together with EPOS simulations. For the simulation of NSD
events, we use simply the same requirement as used in the
experiment (coincidence of charged particles in a forward and
backward pseudorapidity interval).

FIG. 9. Pseudorapidity distribution for inelastic and NSD events
in pp̄ collisions at 200 GeV. Lines are EPOS results; the points are
data [26]. Dotted line represents the inner contribution to the inelastic
distribution (many particles are coming from remnants).

FIG. 10. Ratio of NSDBBC differential yield to inelastic differen-
tial yield, in pp collisions, for pions (π ), kaons (K ), and protons ( p).

In the case of STAR, one could also define NSD as the
events accepted by the beam beam counter (BBC). What is
actually done is somewhat different. The differential cross
section according to BBC is multiplied by 30/26, in order to
correspond to what Pythia defines to be non-single-diffractive,
corresponding to 30 mb. Then, again based on Pythia, it is
argued that the inelastic differential yield for inelastic events
is obtained essentially (with a small correction at small pt ) by
multiplying by 30/42 (just the ratio of the cross sections), since
single-diffractive (SD) events do not contribute to particle
production. So, the originally measured differential yield and
the inelastic one differ essentially by a factor of 42/30 =
1.4. This is not quite what EPOS calculations provide when
simulating NSD events with the BBC trigger condition and
comparing with inelastic events. As seen in Fig. 10, the ratio
of the NSDBBC differential yield to the inelastic differential
yield, rather than being 1.4, differs considerably as a function
of pt and also depends on the particle species.

In Fig. 11, we show pt spectra (differential yields) for NSD
events, compared to STAR data [27], and for inelastic events,
compared to PHENIX data [6,28]. Simulation and data agree
within 15% (over 6 orders of magnitude).

When studying (later) dAu collisions, there will be
plenty of discussion concerning the pseudorapidity depen-
dence of certain effects. It is therefore necessary to first
check the pseudorapidity dependence of pt spectra for pp.

FIG. 11. Differential yields in pp collisions as a function of pt

for (from top to bottom) charged particles (over 2) for NSD events,
charged particles (over 2) for inelastic events, and neutral pions for
inelastic events. Lines are EPOS simulations; points are data from
STAR [27] and PHENIX [6,28]. The two agree within 15% (over six
orders of magnitude).
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We

044902-5

PARTON LADDER SPLITTING AND THE RAPIDITY . . . PHYSICAL REVIEW C 74, 044902 (2006)

projectile
partons

target
partons

normal hadronization

collective hadronization

FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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FIG. 12. Inelastic differential yields in pp collisions as a function
of pt for (from top to bottom) charged particles (over 2) at η = 0 and
η = 1; negative particles at η = 2.2 and η = 3.2 (always displaced
by factors of 10). Lines are EPOS simulations; points are data [7].
We also plot (dashed) the simulation curve at η = 0, multiplied by
0.1, 0.01, and 0.001, to serve as reference.

In Fig. 12, we plot inelastic differential yields as a function of
pt , at different pseudorapidities; η = 0, η = 1, η = 2.2, and
η = 3.2. We show EPOS simulations compared to BRAHMS
data [7]. We also plot (dashed line) the simulation curve at
η = 0, multiplied by 0.1, 0.01, and 0.001, to have a reference
for the results at the other pseudorapidities. The spectra clearly
get softer with increasing η.

VI. RESULTS FOR DEUTERON-GOLD

All screening effects are linear in Z, so it is worthwhile to
first investigate Z. In very asymmetric collisions such as dAu,
the projectile Z is essentially zero, whereas the target Z differs
considerably from zero. As shown in Fig. 13 (and obvious
from the definition), ZT increases linearly with the number of
collisions. So Z is essentially a centrality measure. In Fig. 14,
we show the Z distribution for the different centrality classes.
In this way, one understands easily how the different centrality
classes are affected by the splitting effects.

In the following, we define centrality via the impact param-
eter variable. A more correct definition (when comparing with
experiments) via multiplicities in given rapidity intervals has
been tested and gives the same results.

FIG. 13. Target Z as a function of centrality, expressed in terms
of the number of binary collisions, for dAu.

FIG. 14. Z distribution for different centrality classes.

Although we are mainly interested here in transverse
momentum spectra, we still show first of all the pseudorapidity
spectra, which finally determine the normalization of the
pt spectra. In Fig. 15, we show pseudorapidity spectra in
minimum bias dAu collisions: EPOS simulations, compared to
data from PHOBOS [29], STAR [4], and BRAHMS [30]. We
also show different contributions to the simulated distribution.
We distinguish inner and outer (projectile and target) contri-
butions, where the outer contributions are meant to contain the
multiple ladders, originating from ladder splittings, treated in
a collective way, as discussed above. The inner contribution
comes from ordinary ladders in the middle. The asymmetry of
the distribution is clearly due to the target remnant contribution
(the projectile contribution, not shown, is very small). In
Figs. 16 and 17, we show pseudorapidity spectra for central
and peripheral dAu collisions.

Let us now turn to pt spectra. One of the first observations
concerning pt spectra in dAu collisions was the fact that not
only does the nuclear modification factor show a nontrivial
behavior, but also this behavior seems to be strongly pseudo-
rapidity dependent, even when varying η by only one unit. We
will investigate this question in the following discussion.

In Fig. 18, we show transverse momentum spectra of
charged particles in dAu collisions at different central-
ities and at different pseudorapidities. The four figures
represent minimum bias, central (0%–20%), mid-central
(20%–40%), and peripheral (40%–100%) collisions. For
each figure, spectra for four pseudorapidity intervals are

FIG. 15. Pseudorapidity spectra of charged particles in minimum
bias dAu collisions. Lines are EPOS simulations; points are data
from PHOBOS [29] (circles), STAR [4] (triangles), BRAHMS [30]
(squares). We also show the inner and outer target contributions to
the simulated distribution.
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RHIC data: very good agreement, 
(some measurements inconsistent)

proton-proton
Ecm = 200 GeV

deuteron-gold
Ecm = 200 GeV



Model comparison: fixed target p-p data
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Model comparison: fixed target π-p data
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Model comparison: fixed target p-C data
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Mean depth of shower maximum
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Mean number of muons at ground
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Electron-muon number correlation
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Lateral particle 
distribution

dieter.heck@ik.fzk.de: lat_1e19_g_e_mu_rlin
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Why is EPOS so much different ?

EPOS predicts up to 5 times more baryons 
in hadronic shower core at high energy

Possible sources of differences: 
• baryon antibaryon pair production rate & spectra
• leading meson production (?)

(Pierog & Werner, astro-ph/0611311)

Relevant effects (confirmed with modified version of SIBYLL): 
• baryon quantum number conservation
• transverse momentum distribution of baryons
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Fixed target data on baryon production (ii)
0

0.2

0.4

0.6

0.8

1

0 0.5 1

Model comparison

baryon prod. at 175 Gev lab

QGSJET II

EPOS 1.60

QGSJET01

SIBYLL 2.1

10
-1

0.5 1
 x

E

 x
d
!

/d
x

 p + p "  p

p
t
 = 0.5 GeV/c

10
-1

0 0.5 1
 x

E

 x
d
!

/d
x

 p + p "  n

10
-2

10
-1

1

0 0.5 1
 xl

 x
d
!

/d
x

 #
+
 + p " p

10
-1

1

0 0.5 1
 xl

 x
d
!

/d
x

 #
-
 + p " ap

0

0.25

0.5

0.75

1

0 0.5 1

Model comparison
baryon prod. at 250 Gev lab

QGSJET II
EPOS 1.60
QGSJET01
SIBYLL 2.1

1

0 0.5 1
 xl

 x
d
n
/d

x  p + p !  C
+

10
-4

10
-3

10
-2

10
-1

1

0 0.5 1
 xl

 x
d
n
/d

x  p + p !  C
-

1

10

10
2

-1 -0.8 -0.6
 xl

 d
"

/d
x  #

+
 + p ! p

10
-2

10
-1

1

-1 0 1
 xl

 d
"

/d
x  #

+
 + p ! $

10
-3

10
-2

10
-1

1

10

-1 0 1
 xl

 d
"

/d
x  #

+
 + p ! a$

1

10

-1 -0.8 -0.6
 xl

 d
"

/d
x  K

+
 + p ! p

10
-2

10
-1

1

-1 0 1
 xl

 d
"

/d
x  K

+
 + p ! $

10
-2

10
-1

1

-1 0 1
 xl

 d
"

/d
x  K

+
 + p ! a$

250 GeV lab

175 GeV lab
Data: possible
misidentification 
of π+ and p ???

Need more data
(MIPP, NA49)



Tevatron data on baryon production
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• Multiplicity: not really conclusive, 
EPOS better than other models

• Transverse momentum important



Model comparison: high energy
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EPOS predicts up to 
5 times more baryons 
in hadronic shower core10
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Popcorn effect: leading mesons
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Tevatron measurements would be extremely helpful
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Estimated signal for Auger tanks
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Prediction can be tested 
with Auger hybrid events



Hybrid measurement: HiRes-MIA
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Simulation of HiRes-MIA data
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Conclusions

• Different model concepts

• Models in reasonable agreement with pion production data

• Some discrepancies for K+ production

• Baryon antibaryon production underestimated

• EPOS gives very good description of data

• More fixed target measurements needed

• Tevatron and LHC measurements would help

• Cosmic ray data will help to discriminate between models
(KASCADE: Ne-Nμ, hadrons; Auger hybrid events; inclusive 
muon flux measurements)



Hybrid measurement: 
Pierre Auger Observatory
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Measurements of air showers are accumulating at an increasing rate while construction proceeds at the Pierre

Auger Observatory. Although the southern site is only half complete, the cumulative exposure is already

similar to those achieved by the largest forerunner experiments. A measurement of the cosmic ray energy

spectrum in the southern sky is reported here. The methods are simple and robust, exploiting the combination of

fluorescence detector (FD) and surface detector (SD). The methods do not rely on detailed numerical simulation

or any assumption about the chemical composition.

Introduction

The southern site of the Pierre Auger Cosmic Ray Observatory in Argentina now covers an area of approx-

imately 1500 km2. On good-weather nights, air fluorescence telescopes record the longitudinal profiles of

extensive air showers in the atmosphere above the surface array of water Cherenkov detectors [2, 3]. Hybrid

air shower measurements (FD and SD together) are utilized in this analysis to avoid dependence on specific

numerical simulations of air showers and detector responses to them. The analysis is also free of assumptions

about the primary nuclear masses. The fluorescence detector (FD) provides a nearly calorimetric, model-

independent energy measurement: fluorescence light is produced in proportion to energy dissipation by a

shower in the atmosphere [4]. Hybrid data establish the relation of shower energy to the ground parameter

S(1000), which is the water Cherenkov signal in the SD at a distance of 1000 meters from the shower axis.

Moreover, hybrid data determine the trigger probability for individual tanks as a function of core distance and

energy, from which it is found that the SD event trigger is fully efficient above 3 EeV for zenith angles less

than 60◦. The SD exposure is then calculated simply by integrating the geometric aperture over time.

It is the continuously operating surface array which provides the high statistics with unambiguous exposure.

The methods adopted for this first analysis are chosen to be robust and simple. No event-by-event estimation

of shower penetration is attempted, although a variety of methods to achieve that may improve the energy

resolution in future reports. The rapidly growing cumulative exposure will provide much higher statistics for

future measurements of the spectrum. Besides the present statistical uncertainties, the presentation here also

takes account of unresolved systematic uncertainties.

Analysis methods and results

The data for this analysis are from 1 Jan 2004 through 5 Jun 2005. The event acceptance criteria and exposure

calculation are described in separate papers [5, 6]. Events are included for zenith angles 0-60◦, and results are

reported for energies above 3 EeV (3525 events). The array is fully efficient for detecting such showers, so the

acceptance at any time is the simple geometric aperture. The cumulative exposure adds up to 1750 km2 sr yr,

which is 7% greater than the total exposure obtained by AGASA [1]. The average array size during the time of

this exposure was 22% of what will be available when the southern site of the Observatory has been completed.

Assigning energies to the SD event set is a two-step process. The first step is to assign an energy parameter

S38 to each event. Then the hybrid events are used to establish the rule for converting S38 to energy.

The energy parameter S38 for each shower comes from its experimentally measured S(1000), which is the

time-integrated water Cherenkov signal S(1000) that would be measured by a tank 1000 meters from the core.

Simulation: particles at ground correspond to 25% higher 
shower energy than measured shower profile

Caution: within current systematic uncertainty
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