

Hadronic Interaction Models and Accelerator Data

Ralph Engel, Dieter Heck, Sergey Ostapchenko, Tanguy Pierog, and Klaus Werner

Outline

• Introduction: Color flow and strings

• String fragmentation

- Baryon-antibaryon production
- Popcorn effect

• String configurations of different models

- Configurations and data
- High-density effects

Model predictions and comparison with data

- Accelerator data
- Air shower predictions

Color flow and strings (i)

Generic scattering diagram

Color flow and strings (ii)

Generic scattering diagram

String fragmentation: baryon pairs

baryon anti-baryon pair

String fragmentation: popcorn effect

Diquark splitting: improved description of leading meson and baryon data

SIBYLL minimum string configuration

Special fragmentation function for leading diquarks needed for description of data

QGSJET minimum string configuration

Generation of sea quark anti-quark pair and leading/excited hadron

EPOS minimum string configuration

remnants to hadrons

Data and two-string models

Rapidity y

Two-string models:

- very successful
- long-range correlations
- charge distribution
- delayed threshold for baryon pair production

(Capella et al., Physics Reports 1994)

Examples of comparisons with data

EPOS: string contributions

Only model for description of multi-strange baryon production (next slides)

EPOS remnant model and data (i)

⁽Liu et al., PRD 2003)

EPOS remnant model and data (ii)

Two-gluon scattering: SIBYLL

Kinematics etc. given by parton densities and perturbative QCD Two strings stretched between quark pairs from gluon fragmentation

Two-gluon scattering: QGSJET

Sea quark pairs form end of strings, generated from model distribution

Two-gluon scattering: EPOS

Independent sea quarks form string ends

SIBYLL: high parton density effects

(R.E. et al., ICRC 1999)

QGSJET: high parton density effects

Re-summation of enhanced pomeron graphs

(Ostapchenko, PLB 2006, PRD 2006)

EPOS: high parton density effects (i)

(Werner et al., PRC 2006)

EPOS: high parton density effects (ii)

Coefficient	Corresponding variable	Value
S _M	Minimum squared screening energy	$(25 \text{ GeV})^2$
w_M	Defines minimum for z'_0	6.000
w_Z	Global Z coefficient	0.080
w_B	Impact parameter width coefficient	1.160
a_S	Soft screening exponent	2.000
a_H	Hard screening exponent	1.000
a_T	Transverse momentum transport	0.025
a_B	Break parameter	0.070
a_D	Diquark break probability	0.110
a_S	Strange break probability	0.140
a_P	Average break transverse momentum	0.150

$$b_0 = w_B \sqrt{\sigma_{\text{inel}pp}/\pi}$$
 $z_0 = w_Z \log s/s_M,$
 $z'_0 = w_Z \sqrt{(\log s/s_M)^2 + w_M^2},$

(Werner et al., PRC 2006)

Comparison with RHIC data

Model comparison: fixed target p-p data

Model comparison: fixed target T-p data

Model comparison: fixed target p-C data

Note: SIBYLL plotting error, has to be scaled down by ~20%

Model comparison: fixed target π-C data

Note: SIBYLL plotting error, has to be scaled down by ~30%

Model comparison: Tevatron data

Mean depth of shower maximum

Mean number of muons at ground

Electron-muon number correlation

core distance (km)

Why is EPOS so much different ?

Possible sources of differences:

- baryon antibaryon pair production rate & spectra
- leading meson production (?)

(Pierog & Werner, astro-ph/0611311)

EPOS predicts up to 5 times more baryons in hadronic shower core at high energy

Relevant effects (confirmed with modified version of SIBYLL):

- baryon quantum number conservation
- transverse momentum distribution of baryons

Fixed target data on baryon production (i)

Fixed target data on baryon production (ii)

Tevatron data on baryon production

Model comparison: high energy

Popcorn effect: leading mesons

EPOS 1.60 QGSJET01

SIBYLL 2.1

Tevatron measurements would be extremely helpful

Estimated signal for Auger tanks

Hybrid measurement: HiRes-MIA

Simulation of HiRes-MIA data

Conclusions

- Different model concepts
- Models in reasonable agreement with pion production data
- Some discrepancies for K+ production
- Baryon antibaryon production underestimated
- EPOS gives very good description of data
- More fixed target measurements needed
- Tevatron and LHC measurements would help
- Cosmic ray data will help to discriminate between models (KASCADE: N_e - N_{μ} , hadrons; Auger hybrid events; inclusive muon flux measurements)

Hybrid measurement: Pierre Auger Observatory

29th International Cosmic Ray Conference Pune (2005) 00, 101-106

First Estimate of the Primary Cosmic Ray Energy Spectrum above 3 EeV from the Pierre Auger Observatory

The Pierre Auger Collaboration Presenter: P. Sommers (sommers@physics.utah.edu)

Measurements of air showers are accumulating at an increasing rate while construction proceeds at the Pierre Auger Observatory. Although the southern site is only half complete, the cumulative exposure is already similar to those achieved by the largest forerunner experiments. A measurement of the cosmic ray energy spectrum in the southern sky is reported here. The methods are simple and robust, exploiting the combination of fluorescence detector (FD) and surface detector (SD). The methods do not rely on detailed numerical simulation or any assumption about the chemical composition.

Simulation: particles at ground correspond to 25% higher shower energy than measured shower profile

Caution: within current systematic uncertainty

P. Sommers et al. astro-ph/0507150

