# Auger Enhancement Projects: AMIGA & HEAT

Ralph Engel, for the Pierre Auger Collaboration

Aspen Workshop on Cosmic Ray Physics, April 15 - 19, 2007

# Physics motivation: sources



## Physics motivation: composition



Measurement of composition at low energy (ankle region)

(Allard et al., 2005; Aloisio et al. 2006)

# Physics motivation: secondary particles



Possible to measure with neutrino telescopes ?

#### (Seckel & Stanev PRL 2005; Allard et al., JACP 2006)

# Physics motivation: propagation



Propagation of 10<sup>18</sup> eV proton in Galaxy (simulation without random component)

Anisotropies correlated with composition?

(Medina Tanco & Watson, ICRC 2001)

# Current surface detector threshold



#### (March 2007: ~ 1300 of 1600 SD tanks)

Simulated acceptance



Auger SD array 1500m

### AMIGA infill tanks and muon counters



Detector pairs

# AMIGA energy threshold



(Medina et al., astro-ph/0607115)

# AMIGA scintillator design (i)



Extruded polystyrene doped with fluors, 14 pe per passing muon

MINOS-type scintillators





# AMIGA scintillator design (ii)



#### **Detector station:**

3 multi-anode PMTs 4m long strips PVC housing 25 ns, 7 bit electronics area ~ 31.5m<sup>2</sup>



#### Multi-anode PMT:

64 pixels (2 x 2 mm<sup>2</sup>) gain 10<sup>6</sup> QE 13.5% at 520 nm



#### 3 m deep hole: no water

# Expected performance of muon detectors

# Reconstructed muon count rates for $10^{18}$ eV showers at $30^{\circ}$



Example: reconstructed muon lateral distribution (p, 10<sup>18</sup> eV, 30°)



### Improved shower reconstruction

Examples: simulations for proton and iron showers at  $30^{\circ}$ 



(Medina et al., astro-ph/0607115)

### Layout of AMIGA subarray detectors





seen only at large distance

# HEAT telescope design



Calibration & maintenance position



Data taking position

- 3 ``standard'' Auger telescopes tilted to cover 30 60° elevation
- Custom-made metal enclosures
- Prototype studies for northern Auger Observatory



### Combined field of view



Hybrid event rate with AMIGA (750m): ~200 high quality events / year in energy region ~10<sup>18</sup> eV

### Example: simulated nearby event



Simulated shower with core distance  $R_p = 1.2$  km,  $E = 10^{17.25}$  eV



- simulated profile
- reconstructed profile

### Expected acceptance

Acceptance strongly selection cut dependent, here shown for high quality cuts (mean  $X_{max}$ )

Threshold lowered to ~10<sup>17</sup> eV



# Conclusions and outlook

#### Auger enhancement detectors

- lower detection thresholds to few times  $10^{17} \text{ eV}$
- add muon information
- improve reconstruction quality
- AMGIA: tanks and muon scintillators
- HEAT: high elevation telescopes

(details: A. Etchegoyen) (details: H. Klages)

#### **Construction has begun**

- HEAT operational in 2008
- AMIGA prototype cluster 2007/2008
- AMIGA 750m array (23 km<sup>2</sup>) in 2009
- AMIGA 433m array (5.9 km<sup>2</sup>) under discussion (2009?)

