

Searching for neutrino induced showers in the Pierre Auger Observatory

D. Góra^{1,2}, M. Roth¹ and A. Tamburro¹

¹Forschungszentrum und Universität Karlsruhe, Germany ²Institute of Nuclear Physics PAN, Krakow, Poland

- General facts (cosmic ray spectrum, sources of neutrinos, neutrino tau induced showers ...)
- Discrimination criteria to identify neutrino induced showers (footprint analysis, study of asymmetry of the rise and fall time)

MC computations (FD event rate)

Ultra High Energy Cosmic Rays (UHECR)

The Highest Energy Cosmic Rays (GZK cut off)

• Cosmic ray (protons) interact with the Cosmic Microwave Background (CMB) producing pions via the Δ -resonace.

The attenuation length of protons of E=2x10¹¹GeV is 30 Mpc.

Therefore, cosmic rays emitted from sources located at larger distances do not reach the Earth without substantial energy loss.

 Should see no extragalactic UHECR above ~50 EeV (GZK cut off)

Is there the GZK cut off in the spectrum ?

Neutrinos

- Sources of Neutrinos (bottom-up scenario)
- Active Galactic Nuclei (AGN)
- Supernovae followed by Shock Acceleration
- Gamma Ray Bursters (GRB)
- These *conventional* sources produce E⁻² spectrum

 Exotic Sources (top - down scenario)

Cosmic rays result from decay of super-heavy particles ($M_{\chi} >> 10^{21} \text{ eV}$)

- Primordial Topological Defects (TD)
- Z-bursts from UHE neutrino (RNB collisions)

These models predict harder neutrino spectrum.

Acceleration:

Relativistic Fermi Shock Front Acceleration in galactic/extragalatic magnetic fields

Neutrino production (AGN production)

E² [eV cm⁻² s⁻¹ sr⁻¹

E)

• Diffuse flux of neutrinos

(if the directions of the sources generating the flux are not resolvable)

Photon flux at E>100 MeV as measured by EGRET till 1995

• GZK events are diffuse (scattering-based), so EGRET γ flux sets upper limit ('max' curve) assuming pion production in CMB photoproduction^{10¹⁶} accounts for all UHE photons and all UHE neutrinos

• Waxman-Bahcall ν flux limit assumes UHECR sources are optically thin due to $p\gamma$ and pp interactions and ν production occurs via CMB photoproduction

$$E^{2}\Phi(E_{v}) = 1 \times 10^{-8} (GeV cm^{-2} s^{-1} sr^{-1})$$

J.N. Bahcall, E. Waxman, Phys. Rev. D 64 (2001) 023003

GZK UHE Neutrinos

 GZK neutrinos (cosmogenic neutrinos) come from inverse photoproduction of the Δ⁺ resonance on CMB photons throughout space and time back to the Big Bang

 $\textbf{p + } \gamma_{\text{CMB}} \! \rightarrow \! \Delta^{\! +} \! \rightarrow \! \pi^{\! +} \textbf{n}$

attenuates proton flux above threshold and limits UHECR energy to < 40 EeV for sources > 50 MPc away.

UHE neutrino Flux Models

Neutrino Propagation Effects

- Galactic and intergalactic magnetic fields smear UHECR trajectories over Mpc distance scales, destroying source information for charged cosmic rays.
- Pointing capability of neutrinos offers unique chance to identify discrete sources.

• Highest energy neutrinos are born as v_{μ} , v_{e} Neutrino mixing of v_{μ} produces v_{e} , v_{μ} and v_{τ} fluxes in ratio of 1:1:1 after propagating astronomical distances \Rightarrow can use special decay characteristics of τ neutrinos to enhance detection (Beacom, Bell, Hooper, Pakvasa, and Weiler, Phys. Rev. D 68 (2003) 093005).

Neutrino cross-section at very high energy

 \bullet Due to small interaction cross-section large detectors are needed for detection of ν

Neutrino interaction

Tau neutrino propagation and decay

• tau decay channels

Decay	Secondaries	Probability	Air-shower		
$\tau \to \mu^- \bar{\nu}_\mu \nu_\tau$	μ^-	17.4%	Unobservable		
$ au ightarrow e^- \overline{ u}_e u_ au$	e^-	17.8%	1 Electromagnetic		
$ au o \pi^- u_{ au}$	π^{-}	11.8%	1 Hadronic		
$ au o \pi^- \pi^0 u_ au$	π^- , $\pi^0 o 2\gamma$	25.8%	1 Hadronic, 2 Electromagnetic		
$ au ightarrow \pi^- 2 \pi^0 u_{ au}$	π^- , $2\pi^0 ightarrow 4\gamma$	10.79%	1 Hadronic, 4 Electromagnetic		
$ au ightarrow \pi^- 3 \pi^0 u_{ au}$	π^- , $3\pi^0 \rightarrow 6\gamma$	1.23%	1 Hadronic, 6 Electromagnetic		
$\tau \to \pi^- \pi^- \pi^+ \nu_\tau$	$2\pi^-,\pi^+$	10%	3 Hadronic		
$\tau \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$2\pi^-,\pi^+,\pi^0 \rightarrow 2\gamma$	5.18%	3 Hadronic, 2 Electromagnetic		
adopted from Fargion					

• Tau interaction length about a few km at 1 EeV, so produced lepton τ close to the Earth surface can emerge and produce potentially detectable v showers

Emerging Tau neutrino flux

Neutrino monoenergetic beam, computations with the simple spherical model of the Earth (6371 km)

- τ emerging within a few degrees from horizon
- largest efficiency for tau induced showers at about 10 EeV

Pierre Auger Observatory as neutrino detector

Pierre Auger Observatory

• The Surface Array Detector (SD)

• Fluorescence Detector (FD)

• PMT signals

shape in 25 ns intervals \Rightarrow

Information on muonic and EM component

• <u>440 PMT per camera,</u> each 1.5°

15% duty cycle, 100 ns sampling intervals

Identification of neutrinos

EM rich, curved and thick front **Broad signal**

EM poor, muon rich, flat and thin front **Prompt signal**

Footprint in case of proton induced showers

LDF = LDF($\mathbf{r}; \boldsymbol{\theta}$)

Footprint in case of up-going tau neutrino induced shower

• Elongated footprint on the ground with large EM component

Selection criteria based on footprint analysis

• Variables defined from the footprint (in any configuration, even aligned)

length L and *width* W - major and minor axis of the ellipsoid of inertia weighted by the station signals

"speed" - for each pair of stations (distance projected onto main axis/difference between the start time)

Selection criteria (up-going tau neutrino induced showers)

• Search for long shaped configurations, compatible with a front moving horizontally at speed c, well contained inside the array

P. Billoir Nove III international Workshop "Neutrino Oscillation in Venice"

Identification of neutrinos

(trigger conditions)

- The **local trigger** (at level of the one tank) is the logical *or* of two conditions:
- either a high threshold is passed at least one slot of the FADC trace
- low threshold is passed at least N times in a given time interval,

so called **ToT** ("time over threshold") designed to select broad signal.

- The global condition:
- compact configuration is required
 (3 local station satisfying the *ToT*,

one "central" + one within 1500 m + one within 3000m)

- to get rid of coincidences of large signal the ratio area/peak >1.4

• Neutrino event is required to have more than 80% of tagged as *ToT*.

Identification of neutrinos (rise time & fall time)

Asymmetric time structure

(up-going tau neutrino induced showers)

Identification of neutrinos (asymmetric time structure – up going tau induced neutrino showers)

Identification of neutrinos (a real event)

Identification of neutrinos (Example of the real elongated events)

• Elongated footprints are observed:

event 1101015 Dec 2005

event 2924050 Dec 2006

FD acceptance

(up going tau neutrino showers as seen by FD)

Yearly event rate (up going tau neutrino showers as seen by FD)

Gora et. al. Astropart. Phys. 26 402 2007

E _τ >0.1 E	eV WB	GZK-L	GZK-H	TD	NH
	0.21	0.62	1.02	0.77	1.85
N ^{Acc} FD	0.01	0.08	0.14	0.11	0.28

about one event per 10 years in case of GZK neutrinos

Sensitivity for Cosmogenic v

Summary and Outlook

• The Pierre Auger Observatory is sensitive to UHE neutrinos (most promising scenario: tau lepton induced showers)

 Criteria like footprint analysis and study of rise/fall time allow to distinguish neutrino induced events from large background of the "normal" nucleonic showers

- The possible detection with fluorescence telescope event rate is smaller than for ground detector but ...
 - direct evaluation of altitude and energy
 - possibility to distinguish up-going induced showers from down going showers