The energetic and magnetic framework for intergalactic UHECR propagation: Some new results

> Philipp Kronberg Los Alamos National Laboratory

Aspen Cosmic Ray Workshop April 15 – 19, 2007

1.

First attempts to probe intergalactic fields in large scale filaments of galaxies

Magnetic energy reservoir from galactic black holes: A global calculation

Average galactic $< \rho_{BH} > \approx 2 \times 10^5 M_{\odot} / Mpc^3$ BH density $(\geq 10^6 M_{\odot})$ Gravitational energy $M_{BH}c^2 = 1.8 \times 10^{62} \frac{M_{BH}}{10^8 M_{\odot}} ergs$ reservoir per BH (scaled to infall to R_s) $e_{\rm B} = 1.36 \times 10^{-15} \left(\frac{\eta_{\rm B}}{0.1}\right) \times \left(\frac{f_{\rm RG}}{0.1}\right) \times \left(\frac{f_{\rm FIL}}{0.1}\right) \times \left(\frac{M_{\rm BH}}{10^8 M_{\odot}}\right) \text{ erg cm}^{-3}$ Gives $B_{IG}^{BH} = \sqrt{8\pi\varepsilon_{B}} = 1.8 \times 10^{-7}$ G Within galaxy filaments

Next: 2 examples of BH-fed systems

CR + B adds to i.g. magnetic energy from infall in LSS Ryu, Kang, & Biermann ApJ <u>335</u>,19 (1998), Ryu, Kang, Hallman, & Jones ApJ **593**, 599 (2003)

and

Energy density of quasar photon output (optical data based)

 $\mathcal{E}_{QL} \approx 1.3 \times 10^{-15}$ erg cm⁻³ is remarkably similar (Soltan, 1982, Richstone 2004, Choksi & Turner, *MNRAS*, <u>259</u>, 421, 1992.)

Conclusions:

Large galaxies appear to supply a non-trivial fraction of the distributed energy – in mag. field and CR's into LSS walls and filaments.

Expect \approx 0.1 µG fields in LSS galaxy filaments

An illustrative simple global calculation \rightarrow

1. SRM – CfA2 survey analysis

Create Voronoi diagrams (VD), from CfA redshift survey where z's enable 3-D galaxy mapping

weighted path length:

 $wpl_{j} = \sum_{i} I_{ij} \delta_{ij}$

*i*th VD, *j*th background RM probe direction

 δ_{l} = overdensity of *i*th galaxy

"QHULL" algorithm (C.B. Barber et al. 1996) CfA redshift survey (J. Huchra et al. 1998)

2. SRM – 2MASS survey analysis

- Also used 2MASS survey. Only 2-D information, but for 1.3x10⁶ galaxies m_K<14.5
- Heirarchical Equal Area isoLatitude Pixelization (HEALPix) algorithm
- 3-level overdensity (N_g) ranges; lowest at 1_σ above mean

$$\chi^{2} = \sum_{i=1}^{N_{s}} (MRM_{i} - SRM_{i})^{2} / \sigma_{SRM}^{2}$$

Likelihood

2. SRM – 2MASS survey analysis

- Also used 2MASS survey. Only 2-D information, but for 1.3x10⁶ galaxies m_K<14.5
- Heirarchical Equal Area isoLatitude Pixelization (HEALPix) algorithm
- 3-level overdensity (N_g) ranges; lowest at 1_σ above mean

 $\chi^{2} = \sum_{i=1}^{N_{s}} (MRM_{i} - SRM_{i})^{2} / \sigma_{SRM}^{2}$

Xu, Kronberg, Habib, Dufton: ApJ 2006, 637, 19

SMOOTHED RM

rad/m²

GALAXY COLUMN DENSITY (Method #2)

galaxies per pixel

Summary of results

- Virgo supercluster: no meaningful result: <N_G> (2MASS) and *wpl* (CfA2) too small. Also, galactic variations over its large angular extent.
- Hercules supercluster: Global association of enhanced RM's with the Hercules supercluster. But no detailed correlation with small scale galaxy concentration. Could be confused by Galactic features.
- Perseus-Pisces supercluster: SRM enhancement shows positive correlation with 2MASS N_G.Also with *wpl* in CfA2 data (VD analysis). 2σ result. Implies B_{IGM} $\sim 0.3 (L_{500kpc})^{-0.5}$ microgauss IGM field.
- Can't exclude some possibility of (perverse) mimicking of SRM by galactic foreground effects

2.

Giant radio galaxies (GRG) are prime calorimeters of BH energy release (B + CR's) into extragalactic space. And possibly UHECR acceleration sites? (Kronberg, Dufton, Li & Colgate ApJ 2001)

BH (magnetic + CR) energy output ($\gtrsim 10^{60}$ ergs) is "captured" within a few Mpc,

 η (photons), $\approx 20\%$ (mostly <u>not</u> captured) appears comparable to η (CR + B),

Indications for distributed acceleration of CR's within Mpc-sized (intergalactic) radio lobe volumes *Kronberg, Colgate, Li & Dufton ApJ 2004* a "template" for widespread IGM CR acceleration??

Could UHECR's be energized outside of galaxy systems – no galaxy-localized sources?

BH energy feedback into the IGM a uniquely large energy factor

Faint intergalactic synchrotron emission a new tracer of large scale structure? *Maybe not; rather B² and CR energy: (discussed next)*

3.

New probes for for distributed, intergalactic (CR + B) energy on supra-cluster scales

Kronberg, Kothes, Salter, Perillat, ApJ April 2007

Arecibo 305m Telescope, PR

Dominion Radio Astrophysical Observatory Penticton BC, Canada

Precision track (E-W)

7 x 9m dishes

Max. separation = 617mMin. projected separation $\approx 18m$

In 12 days, 1 full image within 9° circle at 408 MHz

8° dia. Field containing combined Arecibo + DRAC data, at a resolution of 2.5' x 6.5' 0.4 GHz

> 2.7K CMB background and galactic foregrounds (\approx 18K) are included

COMBINED Arecibo-DRAO image, smoothed to 10' resolution (Arecibo)

Contours at 1.0 (\approx 4 σ), 2.25, 3.5, 10 K, 10' x 10' radio (Arecibo) beamwidth

A 16 – 22K linear T_B plane has been subtracted out (= CMB + smooth gal. foreground)

 0° K defined as the average mean T_B of 3 approx. equally **cold zones** – see image. The extended CfA survey (Huchra et al.) contains 2 superimposed clusters at ≈ 38,000 km/s & 70,000 km/s, respectively. (yellow box)

Yellow points: 30,000 < v < 100,000 km/s

In contrast to Coma, there is **no** <u>radio glow</u> - <u>galaxy overdensity</u> correspondence.

Tentative conclusions:

- Radio glow not a 1:1 tracer of stellar baryonic mass
- Rather, biased to <u>CR</u> + <u>magnetic</u> energy density

Summary (I)

 Conclude from above: Diffuse synchrotron, and (*predict*) I.C. X, and γ-ray emission, is <u>NOT</u> a faithful global tracer of baryonic LSS.

 Rather, diffuse cm radio traces zones of enhanced intergalactic <u>CR</u> and <u>magnetic</u> energy density

Summary (II)

- Many similar features (and distributed i.g. energy) on Mpc scales are yet to be discovered (e.g. features like "A" & "B")
- First discovery of low-foreground "peep-holes" for future high- *l* CMB fluctuation analyses.

 Emphasizes <u>future</u> possibilities of <u>large</u> reflector + <u>synthesis telescope</u> combinations

Summary (III)

- B ~ 10⁻⁷ G in IGM reasonable to expect, and may have (just) been detected. Significant curvature of UHECR propagation paths are likely.
- 2. Long, kpc Mpc EG jets candidates for making UHECR's
- 3. If so, UHECR acc'n sites are distributed, although energized from a (localized) central BH.
- 4. Large, Mpc diffuse, "CR + B"- energized regions may be be more common in the local universe.
- 5. Baryonic and dark ,matter distribution seem quite different from that of CR and magnetic energy in the Universe

Physics.rutgers.edu/cosmic-ray/agenda.html

A γ-ray burst as an IGM *B*-probe *R. Plaga, NATURE* **374**, 430, 1995

Widespread intergalactic magnetic field (<<10⁻¹¹G)

(Illustration: Kronberg, NATURE, 374, 404, 1995)