# Fluorescence in air excited by electrons from a Sr90 source

Naoto Sakaki

(Aoyama Gakuin University)

collaboration with M.Nagano, Y.Watanabe, K.Kobayakawa and K.Ando

|                                                                                                | Paper(s)                                                                                        |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                |                                                                                                 |
|                                                                                                | Astroparticle Physics, <b>22</b> (2004) 235–248.<br>M.Nagano, K.Kobayakawa, N.Sakaki and K.Ando |
| <ul> <li>fluorescence yield in dry air for 15 bands</li> <li>two component analysis</li> </ul> |                                                                                                 |
|                                                                                                | $\rightarrow$ 300–430nm is covered with our own measuremen                                      |
|                                                                                                |                                                                                                 |
|                                                                                                | Astroparticle Physics, <b>20</b> (2003) 293–309.<br>M.Nagano, K.Kobayakawa, N.Sakaki and K.Ando |

#### **Fluorescence from Nitrogen**





#### chamber



#### **Electron beam**



### **Block diagram of DAQ**



#### **ADC and TDC data**



# **Photon Yields by Electron**

$$Y = \frac{N}{I \times a \times \Omega \times \eta \times f \times \text{Q.E.} \times \text{C.E.}}$$

- *Y*: Photon Yield per unit length
- *I*: Total number of electrons
- *N*: Total number of signal counts
- *a*: Length of the fluorescence portion
- $\Omega$ : Solid angle of the PMT
- $\eta$ : Quartz window transmission
- *f*: filter transmission
- Q.E.: Quantum efficiency of the PMT
- C.E.: Collection efficiency of the PMT

#### **Systematic errors**

| Item                                       | Errors |
|--------------------------------------------|--------|
| Quantum Efficiency (Q.E.) of PMT           | 5%     |
| Collection Efficiency (C.E.) of PMT        | 10%    |
| Transmission coefficient of filter         | 5%     |
| Contamination from lines at the tail of    | 2%     |
| filter transmission                        |        |
| Other parameters (I,a, $\Omega$ , $\eta$ ) | 4%     |
| Total                                      | 13%    |

Statistical error in each run is less than 3%.

### **Two Component Analysis**

392nm filter = 391.4nm(1N)+394.3(2P)428nm filter = 427.8nm(1N)+427.0(2P)

$$Y_{\rm obs} = Y_1 + Y_2 = \frac{C_1 p}{1 + p/p_1'} + \frac{C_2 p}{1 + p/p_2'}$$

 $C_1, C_2, p'_1, p'_2$  are determined with LS method.

# **Photon Yield (Nitrogen)**



# **Parameters (Nitrogen)**

| main           | $\epsilon$                     | p'                            | C                              | $E^{\circ}$                     |
|----------------|--------------------------------|-------------------------------|--------------------------------|---------------------------------|
| $\lambda$ (nm) | $m^{-1}$                       | hPa                           | $	imes 10^{-2}$ /(hPa·m)       | $\times 10^{-4}$                |
| 316            | $2.03 \hspace{0.1in} \pm 0.21$ | $88.1~\pm~7.5$                | $2.51 \hspace{0.1in} \pm 0.14$ | $5.07 \hspace{0.1in} \pm 0.28$  |
| 329            | 0.622±0.063                    | 121. ±10.                     | 0.575±0.033                    | $1.12 \hspace{0.1 cm} \pm 0.06$ |
| 337            | 8.28 ±0.25                     | 155. ± 4.                     | 6.16 ±0.10                     | 11.7 ±0.2                       |
| 354            | 0.417±0.044                    | $70.3~\pm~6.4$                | 0.634±0.035                    | $1.15 \hspace{0.1 cm} \pm 0.06$ |
| 358            | $5.64 \hspace{0.1in} \pm 0.31$ | 125. ± 6.                     | $5.07 \hspace{0.1in} \pm 0.16$ | $9.07 \hspace{0.1 cm} \pm 0.29$ |
| 376            | 0.873±0.059                    | $82.5~\pm~4.7$                | 1.14 ±0.04                     | $1.95 \hspace{0.1 cm} \pm 0.07$ |
| 381            | $2.09 \hspace{0.1in} \pm 0.25$ | 128. ±14.                     | 1.84 ±0.09                     | 3.08 ±0.16                      |
| 391            | 0.419±0.049                    | 5.46± 0.50                    | 7.72 ±0.54                     | 12.6 ±0.9                       |
| 394            | 0.185±0.078                    | $39.4	\pm12.5$                | 0.49 ±0.13                     | $0.79 \hspace{0.1in} \pm 0.22$  |
| 400            | 0.399±0.036                    | $62.9~\pm~4.8$                | 0.674±0.033                    | 1.08 ±0.05                      |
| 406            | 0.73 ±0.15                     | 140. ±25.                     | 0.597±0.064                    | 0.94 ±0.10                      |
| 414            | 0.108±0.029                    | 111. ±24.                     | 0.108±0.017                    | 0.167±0.027                     |
| 420            | 0.073±0.028                    | 34. ±10.                      | 0.222±0.050                    | 0.338±0.076                     |
| 427            | 0.188±0.113                    | <b>232.</b> $^{+144.}_{-71.}$ | 0.099±0.038                    | 0.148±0.057                     |
| 428            | 0.151±0.031                    | $5.6 \pm 1.1$                 | 2.72 ±0.24                     | 4.07 ±0.36                      |
| Sum            | 21.69 ±0.55                    | (300nm~406nn                  | n)                             |                                 |
| Sum            | 22.20 ±0.56                    | (300nm~430nn                  | n)                             |                                 |

# **Photon Yield (Dry Air)**





# **Parameters (Dry Air)**

| main           | $\epsilon$        | p'                               | C                              | $E^{\circ}$                     |
|----------------|-------------------|----------------------------------|--------------------------------|---------------------------------|
| $\lambda$ (nm) | $m^{-1}$          | hPa                              | $\times 10^{-2}$ /(hPa·m)      | $\times 10^{-4}$                |
| 316            | 0.549±0.057       | $23.0~\pm~1.9$                   | $2.44 \hspace{0.1in} \pm 0.15$ | 4.80 ±0.29                      |
| 329            | 0.180±0.026       | $40.2~\pm~4.6$                   | $0.465{\pm}0.042$              | $0.880 {\pm} 0.080$             |
| 337            | $1.021 \pm 0.060$ | $19.2~\pm~0.7$                   | $5.43 \hspace{0.1in} \pm 0.15$ | 10.01 ±0.27                     |
| 354            | 0.130±0.022       | $30.6~\pm~3.9$                   | $0.437{\pm}0.046$              | $0.769{\pm}0.080$               |
| 358            | 0.799±0.080       | $18.1~\pm~1.4$                   | 4.50 ±0.28                     | $7.82 \hspace{0.1 cm} \pm 0.48$ |
| 376            | 0.238±0.036       | $34.1~\pm~4.1$                   | $0.722{\pm}0.068$              | 1.20 ±0.11                      |
| 381            | 0.287±0.050       | $19.4~\pm~2.6$                   | 1.51 ±0.17                     | 2.46 ±0.27                      |
| 391            | 0.302±0.020       | 5.02± 0.26                       | 6.04 ±0.25                     | 9.60 ±0.39                      |
| 394            | 0.063±0.033       | $\textbf{24.2}~\pm~\textbf{9.4}$ | 0.267±0.093                    | 0.42 ±0.15                      |
| 400            | 0.129±0.019       | $24.2~\pm~2.8$                   | 0.544±0.053                    | 0.847±0.082                     |
| 406            | 0.118±0.019       | 12.3 $\pm$ 1.6                   | 0.972±0.010                    | 1.49 ±0.15                      |
| 414            | 0.041±0.009       | $19.3~\pm~3.4$                   | 0.217±0.031                    | 0.327±0.047                     |
| 420            | 0.042±0.015       | $7.3~\pm~1.9$                    | 0.58 ±0.13                     | 0.86 ±0.20                      |
| 427            | 0.032±0.023       | <b>72.</b> $^{+60.}_{-23.}$      | 0.047±0.021                    | 0.069±0.031                     |
| 428            | 0.121±0.022       | 3.86± 0.59                       | 3.14 ±0.28                     | 4.57 ±0.41                      |
| Sum            | 3.81 ±0.13        | (300nm~406nn                     | n)                             |                                 |
| Sum            | 4.05 ±0.14        | (300nm~430nn                     | n)                             |                                 |

# **Energy dependence of Photon Yield**



#### Photon yields between 300 and 406nm





#### Photon yields as a function of $\rho$ and T

 $Y_i = \frac{A_i \rho}{1 + \rho B_i \sqrt{T}}$ 

where

$$A_i = \frac{\frac{\mathrm{d}E}{\mathrm{d}x}E_i^0}{h\nu_i}$$

$$B_i = \frac{R_{N_2}\sqrt{T}}{p'_i}$$

#### A and B in various bands

| main           | Nitrogen      |                                 | A             | ir                                  |
|----------------|---------------|---------------------------------|---------------|-------------------------------------|
| $\lambda$ (nm) | A             | В                               | A             | В                                   |
|                | $m^2 kg^{-1}$ | $m^3 kg^{-1} K^{rac{1}{2}}$    | $m^2 kg^{-1}$ | $m^3$ kg $^{-1}$ K $^{\frac{1}{2}}$ |
| 316            | 21.8 ±1.2     | 0.577±0.049                     | 20.5 ±1.3     | 2.14±0.18                           |
| 329            | 5.00±0.29     | 0.419±0.035                     | 3.91±0.35     | 1.22±0.14                           |
| 337            | 53.6 ±0.9     | 0.328±0.008                     | 45.6 ±1.2     | 2.56±0.10                           |
| 354            | 5.52±0.31     | 0.723±0.066                     | 3.68±0.39     | 1.60±0.21                           |
| 358            | 44.1 ±1.4     | 0.407±0.019                     | 37.8 ±2.3     | 2.72±0.22                           |
| 376            | 9.95±0.35     | 0.616±0.035                     | 6.07±0.57     | 1.44±0.17                           |
| 381            | 16.0 ±0.8     | 0.397±0.042                     | 12.7 ±1.4     | 2.53±0.35                           |
| 391            | 67.2 ±4.7     | 9.31 ±0.86                      | 50.8 ±2.1     | 9.80±0.51                           |
| 394            | 4.3 ±1.2      | 1.29 ±0.41                      | 2.25±0.78     | 2.03±0.79                           |
| 400            | 5.87±0.28     | 0.808±0.061                     | 4.58±0.44     | 2.03±0.23                           |
| 406            | 5.20±0.56     | $0.363{\pm}0.064$               | 8.18±0.82     | 3.99±0.52                           |
| 414            | 0.94±0.15     | $0.46 \hspace{0.1 cm} \pm 0.10$ | 1.83±0.26     | 2.55±0.45                           |
| 420            | 1.93±0.43     | $1.49 \hspace{0.1in} \pm 0.46$  | 4.9 ±1.1      | 6.8 ±1.7                            |
| 427            | 0.86±0.33     | 0.22 ±0.10                      | 0.40±0.18     | 0.68±0.38                           |
| 428            | 23.7 ±2.1     | 9.1 ±1.8                        | 26.5 ±2.4     | 12.7 ±1.9                           |

# **Altitude dependence of Photon Yield**



#### Photon attenuation with distance

#### Rayleigh scattering only



# **Specific Humidity**

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

# Water Vapor effect (very preliminary)

![](_page_22_Figure_1.jpeg)

Sakaki et al., ICRC29

# **Summary**

- From the pressure dependence of photon yields, fluorescence efficiencies without collisional quenching are determined for 15 bands.
- Photon yields are determined as a function of the gas density and the temperature for 15 bands.
- Total photon yield between 300 and 406nm is 3.81±0.13 (±13% syst.), which is 22% larger than the summary by Bunner at 1013 hPa and 20°C.
- We need the detailed evaluation, taking account of the density and temperature dependence of each band and other factors which depend on wave length, in estimating the primary energy of cosmic rays.
- For space based observations such as JEM-EUSO, the quenching by water vapor should be taken into account. For ground based experiments such as Auger, HiRes, TA, it will be negligible. The measurement of photon yield in moist air is now in progress.

#### Photon yields between 300 and 406nm

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

# Assumptions

- CORSIKA 6.020 (QGSJET)
- Proton at E= $10^{19}$ , $10^{20}$  with  $\theta = 0, 60^{\circ}$
- observation height is at 0 m a.s.l.
- dE/dx=2.19MeV/(g cm<sup>2</sup>) for all electrons
- Transmission by Rayleigh scattering

 $T_R = \exp\left[-\frac{|x_1 - x_2|}{X_R} \left(\frac{400[\text{nm}]}{\lambda}\right)^4\right]$ 

![](_page_25_Figure_7.jpeg)

Transmission by Mie scattering (scale height  $H_M$ =1.2 km, horizontal attenuation  $L_M = 25$ km)

$$T_M = \exp\left(\frac{H_M}{L_M \cos\theta} \left[\exp\left(-\frac{h_1}{H_M}\right) - \exp\left(-\frac{h_2}{H_M}\right)\right] \frac{400[\text{nm}]}{\lambda}\right)$$

- US standard atmosphere 1976
- $\blacksquare$   $\lambda$  dependence of HiRes filter transmission and Q.E. of HiRes PMT

### Comparison of Observed total number of photons

![](_page_26_Figure_1.jpeg)