

Aspen Workshop on Cosmic Ray Physics

April 15-19, 2007 Aspen, Colorado

Status and results from the Pierre Auger Observatory

Lorenzo Perrone for the Auger Collaboration

Università del Salento and INFN Lecce – Italy

The Physics Case: highest energy cosmic rays

Standard astrophysical models hardly account for CR at energy E>10²⁰ eV

GZK cutoff at $E > 10^{19.5} eV$

 $p + \gamma_{CMB} \rightarrow p + \pi^0, n + \pi^+$

But CR with $E > 10^{20} eV$ exist

If GZK <u>is observed</u> :

Near sources should be identified high magnetic rigidity of particles allows astronomy *GZK shape-> source distance distribution*

If GZK is NOT observed :

sources are nearby

other scenarios

TD models, violation of Lorentz invariance,...

Observables: signal shapes with a given time, from different techniques.

spectrum ``phenomenology'' arrival directions chemical composition

The Pierre Auger Collaboration

17 Countries

63 Institutions

 ~ 350 members

Argentina, Australia, Bolivia, Brazil, Czech Rep., France, Germany, Italy, Mexico, Netherlands, Poland, Portugal, Slovenia, Spain, UK, USA, Vietnam.

Pierre Auger Observatory

An International Facility to Study the Highest Energy Cosmic Rays

Mendoza Province, Argentina,

The Hybrid Concept

The Auger Observatory combines independent measurement techniques

Surface Detector Array

Air Fluorescence Detectors

-more reliable energy measurement

-mass composition studies in a complementary way

"In order to make further progress, particularly in the field of cosmic rays, it will be necessary to apply all our resources and apparatus simultaneously and side-by-side." V.H.Hess, Nobel Lecture, December 1936

Southern Observatory (Argentina)

Very flat region

"Pampa Amarilla" Malargüe (Argentina)

35° S latitude 69° W longitude $\approx 1400 \text{ m height} \approx 875 \text{ g/cm}^2$

Very low population density $(< 0.1 / \text{km}^2)$

Very good atmospheric conditions (clouds, aerosol...)

Future plan for Northern Observatory in Colorado (USA)

The Pierre Auger Observatory

A water tank deployed in the Pampa

Auger Status: Sd (last Friday)

There are 1299 tanks deployed, 1273 with water and 1211 with electronics

To be completed at beginning 2008

Routine data collected since January 2004

Exposure is already more than 3 times that of AGASA

Fd Detector

field of view: 30° x 30° each

UV Filter

Auger Status: Fd

Los Leones

fully operational

Coihueco

Los Morados

A Loma Amarilla hybrid event from last March

Loma Amarilla Regularly taking data since February 23rd

Calibration

Sd

Fd

light flux measured by absolutely calibrated PMT

Drum: uniform camera illumination

Through-going cosmic muons

Atmospheric Monitoring

Fd test beam

One cloud monitor per eye

Balloons launches

One Lidar station per eye

Fd (Hybrid) reconstruction

Hybrid vs Monocular

Sd reconstruction

Geometry from the arrival time sequence

LateraldistributionanddeterminationoftheenergyestimatorS(1000)throughsimulations

Distance to core (m)

Large systematics expected on the energy:
- 30% from the high-energy hadronic interactions models
- 10-20% from low energy hadronic interaction models

Sd vs Hybrid angular resolution

Improved for hybrids: within 1° down to $10^{17.5}$ eV

Full hybrid simulations with Corsika showers Hybrid Reconstruction at different levels

Sd Angular resolution is a function of arrival direction and tank multiplicity (i.e. of energy)

space angle (deg) between true and reconstructed shower axis direction

A stereo hybrid event

A three-fold hybrid event (I)

A three-fold hybrid event (II)

Hybrid trigger efficiency

Full hybrid simulations with Corsika showers - protons Hybrid Reconstruction at different levels

Fd

Benefits: energy determination doesn't rely on theoretical assumptions (only for missing energy)

<u>Drawbacks</u>: 10-14% duty cycle, monocular reconstruction may poorly perform **Benefits:** Large exposure, almost 100% duty cycle

Sd

Drawbacks: energy determination relies on theoretical assumptions

Hy

- Timing of at least one tank improves dramatically the FD monocular geometry reconstruction (hybrid sample).

- Down in energy below Sd threshold

- Energy scale from Fd with a hybrid reconstruction. It provides a calorimetric measurement for all Sd events (large statistics)

Energy Spectrum(I)

The energy scale is based on fluorescence measurements without relying on a specific interaction model or an assumption about the composition

The energy ``calibration"

Compare ground parameter S(1000) with the fluorescence detector energy for hybrid events

Correct for S(1000) dependence on zenith angle at a given energy

Transfer the energy converter to the surface array only events

S38 = the S1000 a shower would have if it came at a zenith angle of 38 deg

Energy Spectrum (II)

Collection period – 1 January 2004 to 5 June 2005 Zenith angles - 0 – 60° Total acceptance – 1750km² sr yr (~ AGASA) – E > 3 EeV (Sd fully efficient)

Energy Spectrum (III)

Compared to other experiments

M. Takeda et al. Astroparticle Physiscs 19 (2003) 447
R.U. Abbasi et al. Phys. Lett B (to be published)
Sommers et al. (Auger Coll.) 29th ICRC 2005

No events above 10^{20} eV yet

Similar shape to the HiRes spectrum

Study of excess from the Galactic Center (I)

The Pierre Auger Coll., Astroparticle Phys. 27 (2007) 244

<u>Data set:</u>

Collection period – 1 January 2004 to 30 March 2006 Zenith angles - $0 - 60^{\circ} - E > 0.8 \text{ EeV}$ (Sd data calibrated with Fd Hybrid data)

Comparison to AGASA

Energy interval (1.0 - 2.5 EeV)angular scale: 20° around GC

 $n_{obs} / n_{exp} = 2116 / 2159.5$ Auger: $0.98 \pm 0.02(stat) \pm 0.01(sys)$

AGASA: 1.22 $\pm 0.05(stat)$ 22% excess would give $n_{obs} = 2634$ and a 10 σ excess **Comparison to SUGAR**

Energy interval (0.8 - 3.2 EeV)angular scale: 5° around GC

 $n_{obs} / n_{exp} = 286 / 289.7$ Auger: $0.98 \pm 0.06(stat) \pm 0.01(sys)$

SUGAR: 1.85 \pm 0.29(stat) 85% excess would give $n_{obs} = 536$ and a 14.5 σ excess

No excess found

Search for a point-like source in the direction of Sagittarius A^{*}: upper bound derived

Study of excess from the Galactic Center (II)

The Pierre Auger Coll., Astroparticle Phys. 27 (2007) 244

Figure 1: Map of CR overdensity significances near the GC region on angular scales of 5° radius. The GC location is indicated with a cross, lying along the galactic plane (solid line). Also the regions where the AGASA experiment found their largest excess as well as the region of the SUGAR excess are indicated.

An upper limit to the photon fraction (I)

The Pierre Auger Coll., Astroparticle Phys. 27 (2007) 155

<u>Data set:</u>

Collection period – 1 January 2004 to 28 February 2006 (Fd Hybrid data)

Direct observation of the shower longitudinal profile, using the depth of shower maximum X_{max} as discriminator

Photons develop deeper in the atmosphere than protons or heavier nuclei

The method

For each event, the observed X_{max} is compared to the corresponding (same energy, geometry) average value from simulation with photon primaries

An upper limit to the photon fraction (II)

Event selection:

- geometry and longitudinal profile well reconstructed
- $E > 10^{19} eV$
- X_{max} observed
- small Cherenkov light fraction
- good atmospheric conditions

Events with Xmax within a fiducial volume are accepted:

- Xmax well visible; vertical events are rejected as they may land underground (if they were photons)

- events far away are rejected as the detector response depends on primary

Goal: an un-biased detector aperture

29 events survive the selection

An upper limit to the photon fraction (III)

The Pierre Auger Coll., Astroparticle Phys. 27 (2007) 155

Distribution of differences (in deviation standard units) between data and simulation for the 29 events

16% upper limit for the photon fraction

Most of the events have E < 20 EeV

$$\Delta X_{max} = 28(stat) \pm 23(sys) \text{ g cm}^{-2}$$

Inclined events (I)

Zenith $\sim 80^{\circ}$

Single peaks, fast rise, accidental background are similar!

Inclined events (II)

Important for neutrino detection: observable only if almost horizontal

signature would be an inclined shower with large electromagnetic component

Inclined events (III)

31 tanks triggered extending on scale-lenght of about 30 km at ground

Simulated muon map corresponding to the reconstructed zenith and azimuth angles

Separation between μ^+ and μ^- due to the effect of the geomagnetic field

Conclusions

- Auger Data set is growing fast.

- The southern Observatory will be ready at the beginning of 2008

- The benefits of a hybrid measurement have been extremely useful for each analysis

 New results are imminent. Some of them: update Sd hybrid-calibrated spectrum pure hybrid spectrum spectrum for inclined events chemical composition (elongation rate)

- Plans for the Observatory in the northern hemisphere are well advanced

Energy resolution (hybrid sim/rec)

Basic cuts applied

Full hybrid simulations with Corsika showers (fixed energies 10¹⁷ eV 10¹⁹ eV) - protons Hybrid Reconstruction at different levels

Energy resolution (hybrid sim/rec)

Full hybrid simulations with Corsika showers (fixed energies 10¹⁷ eV 10¹⁹ eV) - protons Hybrid Reconstruction at different levels

S1000

16

The First Data Set

Collection period – 1 January 2004 to 5 June 2005 Zenith angles - 0 - 60° Total acceptance – 1750km² sr yr (~ AGASA) Surface array events (after quality cuts) Current rate - 18,000 / month Total -~180,000 Hybrid events (after quality cuts) Current rate -1800 / month Total ~ 18000

SD reconstruction (II)

Why S1000? It's the distance that minimizes the relative error (given the surface detector tank spacing)

Large systematics expected on the energy:

- 30% from the high-energy hadronic interactions models
- 10-20% from low energy hadronic interaction models